

Polarization Study in B_{u,d,s,c} Decays to Vector Final States

Cai-Dian LÜ(吕才典)(IHEP,Beijng)

Collaborators: A. Ali, Y.Li, X. Liu, Z.T. Zou, arXiv:1501.00784

Outline

Polarization problem in $B(B_s) \rightarrow VV$ decays

Numerical analysis in PQCD approach based on k_T factorization/comparison with other solutions

Summary

Polarization of $B \rightarrow VV$ decays

Table 1Longitudinal Polarization Fractions

Process	Belle	Babar	QCDF
$B^0 \to \phi K^{*0},$	$0.45 \pm 0.05 \pm 0.02$	$0.52 \pm 0.05 \pm 0.02$	0.91
$B^+ \to \phi K^{*+},$	$0.52 \pm 0.8 \pm 0.03$	$0.46 \pm 0.12 \pm 0.03$	0.91
$B^+ \to \rho^0 K^{*+},$		$0.96^{+0.04}_{-0.15}\pm0.04$	0.94
$B^+ \to \rho^+ K^{*0}$	$0.43 \pm 0.11 \substack{+0.05 \\ -0.07}$	$0.79 \pm 0.08 \pm 0.04 \pm 0.02$	0.95
$B^+ \to \rho^+ \rho^0,$	$0.95 \pm 0.11 \pm 0.02$	$0.97 \pm 0.04 ^{+0.03}_{-0.07}$	0.94
$B^+ \to \rho^+ \omega,$		$0.88 \pm 0.04^{+0.12}_{-0.15}$	
$B^0 \to \rho^+ \rho^-,$		$0.99 \pm 0.03^{+0.04}_{-0.03}$	0.95

Polarization of $B \rightarrow VV$ decays

Table 1Longitudinal Polarization Fractions

Process	Belle	Babar	QCDF
$B^{0} \to \phi K^{*0},$	$0.45 \pm 0.05 \pm 0.02$	$0.52 \pm 0.05 \pm 0.02$	0.91
$B^+ \to \phi K^{*+},$	$0.52\pm0.8\pm0.03$	$0.46 \pm 0.12 \pm 0.03$	0.91
$B^+ \to \rho^0 K^{*+},$		$0.96^{+0.04}_{-0.15}\pm 0.04$	0.94
$B^+ \to \rho^+ K^{*0},$	$0.43 \pm 0.11 \substack{+0.05 \\ -0.07}$	0.52±0.10±0.04 0.02	0.95
$B^+ \to \rho^+ \rho^0,$	$0.95 \pm 0.11 \pm 0.02$	$0.97 \pm 0.04 \substack{+0.03 \\ -0.07}$	0.94

$D \rho \rho \rho$	$0.30 \pm 0.11 \pm 0.02$	$0.51 \pm 0.01 - 0.07$	
$B^+ \to \rho^+ \omega,$		$0.88 \pm 0.04 \substack{+0.12 \\ -0.15}$	
$B^0 \to \rho^+ \rho^-,$		$0.99 \pm 0.03 \substack{+0.04 \\ -0.03}$	0.95

Polarization of $B \rightarrow VV$ decays

Table 1 Longi	tudinal Polarization	Fractions PRD83 (2	011) 0:	51101
Process	Belle	Babar		QCDF
$B^{0} \to \phi K^{*0},$	$0.45 \pm 0.05 \pm 0.02$	$0.52 \pm 0.05 \pm 0.02$		0.91
$B^+ \to \phi K^{*+},$	$0.52 \pm 0.8 \pm 0.03$	$0.46 \pm 0.12 \pm 0.03$		0.91
$B^+ \to \rho^0 K^{*+},$		$0.78 \pm 0.12 \pm 0.03$		0.94
$B^+ \to \rho^+ K^{*0},$	$0.43 \pm 0.11 ^{+0.05}_{-0.07}$	$0.52 \pm 0.10 \pm 0.04$	0.02	0.95
		-		
$B^+ \to \rho^+ \rho^0,$	$0.95 \pm 0.11 \pm 0.02$	$0.97 \pm 0.04 \substack{+0.03 \\ -0.07}$		0.94
$B^+ \to \rho^+ \omega,$		$0.88 \pm 0.04 \substack{+0.12 \\ -0.15}$		
$B^0 \to \rho^+ \rho^-,$		$0.99 \pm 0.03 ^{+0.04}_{-0.03}$		0.95

Definitions of observables

• flavor-tagged definitions

• flavor-averaged quantities and asymmetries

$$f_{h} = \frac{1}{2} \left(f_{h}^{\bar{B}} + f_{h}^{B} \right), \qquad A_{CP}^{h} = \frac{f_{h}^{B} - f_{h}^{B}}{f_{h}^{\bar{B}} + f_{h}^{B}}$$
$$\phi_{h} \equiv \phi_{h}^{\bar{B}} - \Delta \phi_{h} \pmod{2\pi}$$
$$\equiv \phi_{h}^{B} + \Delta \phi_{h} \pmod{2\pi}, \qquad -\frac{\pi}{2} \leq \Delta \phi_{h} < \frac{\pi}{2}$$

 $h=L,\|,\bot$

• In absence of CP violation, $A_{CP}^{h} = 0$ and $\delta \phi_{h} = 0$. C.D. Lu

Counting Rules for $B \rightarrow VV$ Polarization

- The measured longitudinal fractions R_L for $B \rightarrow \rho \rho$ are close to 1.
- R_L~ 0.5 in φ K^{*} dramatically differs from the counting rules.
- Are the ϕK^* polarizations understandable?

Starting point: left-handed current in weak interaction

 $\bigstar \overline{H}_{00} : \overline{H}_{--} : \overline{H}_{++} \sim \mathcal{O}(1) : \mathcal{O}(1/m_b) : \mathcal{O}(1/m_b^2)$ 00, --, ++ stand for longitudinal, negative, positive helicity

 $\overline{H}_{--}/\overline{H}_{00} = \mathcal{O}(m_{\phi}/m_b)$: the helicity flip for \overline{s} in the ϕ meson is required

$$R_L = \Gamma_L / \Gamma_{total} = \mathcal{O}(1), R_N \sim R_T = \mathcal{O}(m_V^2 / m_B^2)$$

C.D. Lu

Theoretical attempts to solve these puzzles

- New physics (Grossman; Yang; Giri; Das et al.)
- Annihilation effect in QCDF (Kagan)
- Charming penguin in SCET (Bauer et al)
- FSI effect (Colangelo; Ladisa; Cheng, et al)
- Exotic $b \rightarrow sg$ (Hou,Nagashima)
- Most can not fully explain all the measurements, especially relative phases except Annihilation/ charming penguin : Beneke, Yang, Rohrer(2006), Cheng, Chua(2009)

Polarization anomaly in
$$B \rightarrow \phi K^*$$
 [Cheng, Chua, Soni]

Confirmed for $B \rightarrow \rho \rho$ with $f_L \approx 0.97$ but for $B \rightarrow \phi K^* \Rightarrow f_L \approx 0.50, f_{\parallel} \sim 0.25, f_{\perp} \sim 0.25$

Get large transverse polarization from $B \rightarrow D_s^*D^*$ and then convey it to ϕK^* via FSI

 $f_L(D_s^*D^*) \sim 0.51$ $f_{\parallel} \sim 0.41, f_{\perp} \sim 0.08$

contributes to f_{\perp} only

⇒ very small perpendicular polarization, $f_{\perp} \sim 2\%$, in sharp contrast to $f_{\perp} \sim 15\%$ obtained by Colangelo, De FArzio, Pham

While $f_T \approx 0.50$ is achieved, why is f_{\perp} not so small ?

Cancellation in $B \rightarrow \{VP, PV\} \rightarrow \phi K^*$ can be circumvented in $B \rightarrow \{SA, AS\} \rightarrow \phi K^*$. For $S, A = D^{**}, D_s^{**} \Rightarrow f_{\perp} \sim 0.22$

It is very easy to explain why $f_L \approx 0.50$ by FSI, but it takes some efforts to understand why $f_{\perp} \sim f_{\parallel}$

There are still problems for some of the explanations

The perpendicular polarization is given by: $R_{\perp}(B^+ \rightarrow \phi K^{*+}) = 0.19 \pm 0.08 \pm 0.02(Belle)$ $R_{\perp}(B^0 \to \phi K^{*0}) = 0.22 \pm 0.05 \pm 0.02(Babar)$ $R_{\perp}(B^0 \to \phi K^{*0}) = 0.31^{+0.06}_{-0.05} \pm 0.02(Belle)$ Naive BaBar + Belle avg: $(f_{\perp}/f_{\parallel})^{exp} = 0.9 \pm 0.3$ Final state interaction can not explain $R_N = R_T$ and some others are difficult to explain the relative phase

C.D. Lu

A Large Annihilation Can Help Annihilation-Type diagrams

The (S+P)(S-P) current can break the counting rule,

The annihilation diagram contributes equally to the three polarization amplitudes

Example: annihilation graphs due to QCD penguin operator $Q_6 \Rightarrow \langle (\bar{d}b)_{S-P} \times (\bar{s}d)_{S+P} \rangle$ (part of *P*)

- annihilation topology \implies overall 1/m
- helicity-flips \implies rest of 1/m factors, or twists
 C.D. Lu

For (V-A)(V-A), left-handed current

pseudo-scalar B requires spins in opposite directions, namely, helicity conservation

Annihilation suppression ~ $1/m_B$ ~ 10%

No suppression for O₆

- Space-like penguin
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)

In QCDF, the annihilation diagram can only be parameterized, data fitting

$$X_A = (1 + \varrho_A e^{i\varphi_A}) \ln \frac{m_B}{\Lambda_h}$$

 $\overline{f_L}$ can be accomodated with O(1) QCD annihilation amplitude - formally $O(ln^2/m^2) \Rightarrow \rho = O(1)$

- Iarge $\Delta S = 1 B → \phi K$, $K^* π$ rates can be accounted for with O(1) QCD annihilation amplitudes ⇒ ρ = O(1).
- $A_{CP}(K^+\pi^-)$ can be accounted for with $\rho = O(1)$ + large strong phase in QCD annihilation
- In principle all of the above could also be accounted for with 'charming penguins': Leading power? Bauer et al, Subleading power? Ciuchini et al, FSI models Cheng et al, Colangelo et al

Can annihilation dynamics be probed directly: can we test for $\mathcal{O}(1)$ power corrections, or $\rho \sim 1$ in BBNS parametrization?

Vector-current annihilation form factors

$$\langle VP | \bar{q} \gamma_{\mu} q | 0 \rangle = \frac{2iV^{q}}{m_{P} + m_{V}} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\nu} p_{V}^{\sigma} p_{P}^{\rho}$$

$$\langle P_{1}P_{2} | \bar{q} \gamma^{m} u q | 0 \rangle = F^{q} (p_{1} - p_{2})^{\mu}$$

$$\langle V_{1}V_{2} | \bar{q} \gamma^{\mu} q | 0 \rangle$$
 contains three form factors

•
$$V^q \sim 1/s^2 ln^2(\sqrt{s}/\Lambda)$$

- Fq: finite 1/s contribution Brodsky, Lepage + $1/s^2 ln^2(\sqrt{s}/\Lambda)$ correction
- Solution Use continuum CLEO-c (20.46 pb⁻¹)+ BES VP data at $\sqrt{s} \approx 3.7$ GeV, near $\psi(2s)$, to extract $|V^{q}|$. Compare with BBNS parametrization, PQCD
- extrapolate to larger $\sqrt{s} \approx m_B$, compare with reach of luminosity at m_B from initial state radiation (ISR)

$e^+e^- \rightarrow VP$ in BBNS parametrization

considered three values of $\alpha_s = 1, .5, \alpha_s(\sqrt{\sqrt{s}\Lambda_h})$; three values of strong phase $\phi_A = 0, \pm \pi/2, \pi$. Measurements $\Rightarrow \rho_A \sim 1$ or (m/\sqrt{s}) "Log \sqrt{s}/Λ " ~ 1

$e^+e^- \rightarrow K^{*0}K^0$ in PQCD

PQCD annihilation in right ballpark,

$$\underline{e^+e^- \to VV}$$

$$\langle K^* K^* | \bar{q} \gamma_\mu q | 0 \rangle = V_1^q (\epsilon_\mu^* \eta^* \cdot p_1 - \eta_\mu^* \epsilon^* \cdot p_2) + V_2^q (\epsilon^* \cdot \eta^*) q_\mu + V_3^q \frac{\epsilon^* \cdot p_2 \eta^* \cdot p_1}{Q^2} q_\mu$$

Polarizations:

$$V_1^q \Rightarrow LT, \quad Amp \sim 1/Q^3 \operatorname{Log}^2 Q/\Lambda_h \qquad Q \equiv \sqrt{s}$$

 $V_3^q \Rightarrow TT, \quad Amp \sim 1/Q^4 \log^2 Q/\Lambda_h, \quad V_2^q \Rightarrow LL, \quad Amp \sim m_q/Q^4 \log^2 Q/\Lambda_h$

 $\sqrt{s} = 3.67 \text{ GeV}, \phi = 0, \text{ left} : V_1^s(K^{*+}K^{*-}) \text{ vs. } \rho; \text{ right: } \sigma_{LT}(K^{*+}K^{*-}) \text{ [pb] vs. } \rho \text{ for } V_1^u = V_1^d = 0 \text{ (lower)}, SU(3) \text{ limit } V_1^s = V_1^{d,u} \text{ (upper)}.$

Strategies in penguin-dominated decays

- QCDF loses predictive power in penguin annihilations with transverse polarization;
- Use information from experiments as much as we can;
 - Strategy 1: fit only the penguin annihilation from $B \rightarrow \phi K^*$ measurements;
 - Strategy 2: fit the whole penguin amplitude from $B \to \phi K^*$;
 - Trust the predictions for other topological amplitudes using QCDF;
 - Constrained X_A :

C. Starting

 $\varrho_A = 0.5 \pm 0.2_{\text{exp.}} \qquad \varphi_A = (-43 \pm 19_{\text{exp.}})^\circ,$ - $\hat{\alpha}_4^{c-} = \alpha_4^{c-} + \beta_3$ from data:

$$\begin{aligned} \bar{\mathcal{A}}_{-} &= A_{K^*\phi} \lambda_c^{(s)} P_{-}^{K^*\phi}, \\ P_{-}^{K^*\phi} &= (-0.084 \pm 0.008(\exp)^{+0.008}_{-0.009}(\text{th})) \\ &+ i (0.021 \pm 0.015(\exp)^{+0.003}_{-0.002}(\text{th})), \end{aligned}$$

with α_3^{c-} from QCDF

 $\hat{\alpha}_4^{c-} = (-0.08 \pm 0.02) + i (0.03 \pm 0.02).$

C.D. Lu

In Perturbative QCD approach, we do not neglect the quark transverse momentum

$$\overline{x_2 x_3^2 m_B^2} \xrightarrow{\rightarrow} \overline{[x_2 x_3 m_B^2 - (k_{2T} + k_{3T})^2](x_3 m_B^2 - k_{3T}^2)}$$

Then there is no endpoint singularity large double logarithm are produced after radiative corrections, they should be resummed to generate the Sudakov form factor to improve the

perturbation theory.

1

PQCD approach

- $A \sim \int d^4k_1 d^4k_2 d^4k_3 Tr [C(t) \Phi_B(k_1) \Phi_{\pi}(k_2) \Phi_{\pi}(k_3) H(k_1,k_2,k_3,t)] exp\{-S(t)\}$
- $\Phi_{\pi}(k_3)$ are the light-cone wave functions for mesons: non-perturbative, but universal
- C(t) is Wilson coefficient of 4-quark operator
- exp{-S(t)} is Sudakov factor, to relate the shortand long-distance interaction
- $H(k_1, k_2, k_3, t)$ is perturbative calculation of six quark interaction

PQCD approach

- $A \sim \int d^4k_1 d^4k_2 d^4k_3 Tr [C(t) \Phi_B(k_1) \Phi_{\pi}(k_2) \Phi_{\pi}(k_3) H(k_1,k_2,k_3,t)] exp\{-S(t)\}$
- $\Phi_{\pi}(k_3)$ are the light-cone wave functions for mesons: non-perturbative, but universal
- *C(t)* is Wilson coefficient channel dependent
- exp{-S(t)} is Sudakov factor, to relate the shortand long-distance interaction
- $H(k_1, k_2, k_3, t)$ channel dependent ion of six quark interaction

Perturbative Calculation of H(t) in PQCD Approach

Form factor factoriz able

Nonfactori zable

C.D. Lu

Perturbative Calculation of H(t) in PQCD Approach

Nonfactorizable annihilation diagram

Factorizable annihilation diagram

- All diagrams using the same wave functions
- All channels use same wave functions
- Number of parameters reduced

$$A = \phi_B(x_1, b_1) \otimes \phi_{M_1}(x_2, b_2) \otimes \phi_{M_2}(x_3, b_3) \otimes H(x_i, b_i, t) \otimes C(t) \otimes e^{-S(t)}$$

New calculation with updated vector meson wave functions

New calculation with updated vector meson wave functions

The twist-2 distribution amplitudes

$$\begin{split} \phi_V(x) &= \frac{3f_V}{\sqrt{6}} x(1-x) \left[1 + a_{1V}^{\parallel} C_1^{3/2}(t) + a_{2V}^{\parallel} C_2^{3/2}(t) \right] \\ \phi_V^T(x) &= \frac{3f_V^T}{\sqrt{6}} x(1-x) \left[1 + a_{1V}^{\perp} C_1^{3/2}(t) + a_{2V}^{\perp} C_2^{3/2}(t) \right] \\ a_{1\rho}^{\parallel(\perp)} &= a_{1\omega}^{\parallel(\perp)} = a_{1\phi}^{\parallel(\perp)} = 0, \quad a_{1K^*}^{\parallel(\perp)} = 0.03 \pm 0.02 \ (0.04 \pm 0.03) \\ a_{2\rho}^{\parallel(\perp)} &= a_{2\omega}^{\parallel(\perp)} = 0.15 \pm 0.07 \ (0.14 \pm 0.06) \ a_{2\phi}^{\parallel(\perp)} = 0 \ (0.20 \pm 0.07) \\ a_{2K^*}^{\parallel(\perp)} &= 0.11 \pm 0.09 \ (0.10 \pm 0.08) \end{split}$$

The twist-2 distribution amplitudes are not far away from the asymptotic form

The twist-2 distribution amplitudes

$$\begin{split} \phi_{V}(x) &= \frac{3f_{V}}{\sqrt{6}}x(1-x)\left[1+a_{1V}^{\parallel}C_{1}^{3/2}(t)+a_{2V}^{\parallel}C_{2}^{3/2}(t)\right] & \text{Comparing with previous input} \\ \phi_{V}^{T}(x) &= \frac{3f_{V}^{T}}{\sqrt{6}}x(1-x)\left[1+a_{1V}^{\perp}C_{1}^{3/2}(t)+a_{2V}^{\perp}C_{2}^{3/2}(t)\right] & \text{input} \\ a_{1K^{*}}^{\parallel} &= 0.03 \pm 0.02, \qquad a_{2\rho}^{\parallel} &= a_{2\omega}^{\parallel} &= 0.15 \pm 0.07, \\ a_{2K^{*}}^{\parallel} &= 0.11 \pm 0.09, \qquad a_{2\phi}^{\parallel} &= 0.18 \pm 0.08, \\ a_{1K^{*}}^{\perp} &= 0.04 \pm 0.03, \qquad a_{2\rho}^{\perp} &= a_{2\omega}^{\perp} &= 0.14 \pm 0.06, \\ a_{2K^{*}}^{\perp} &= 0.10 \pm 0.08, \qquad a_{2\phi}^{\perp} &= 0.14 \pm 0.07. \end{split}$$

New calculation with updated vector meson wave functions

There are not enough information to constrain the twist-3 distribution amplitudes. We just use the asymptotic form for simplicity.

 $\phi_V^t = \frac{3f_V^1}{2\sqrt{6}}t^2$ $\phi_V^s = \frac{3f_V^T}{2\sqrt{6}}(-t)$ $\phi_V^v = \frac{3f_V}{8\sqrt{6}}(1+t^2)$ $\phi_V^a = \frac{3f_V}{4\sqrt{\epsilon}}(-t)$

Branching ratio(10⁻⁶) f_L

	QCDF	PQCD	Expt	QCDF	PQCD	Expt		
Β⁺→ρ⁺ρ⁰	20.0	13.4	24.0±1.9	0.96	0.98	0.95±0.016		
B⁰→ρ⁺ρ⁻	25.5	26.1	24.2±3.1	0.92	0.94	0.977±0.026		
Β⁰→ρ⁰ρ⁰	0.9	0.27	0.73±0.28	0.92	0.18	0.75±0.14		
1212.4015		1.0	$2 \pm 0.30 \pm 0.15$			$0.21_{-0.22}^{+0.18} \pm 0.13$		
B⁺ → ρ⁺ω	16.9	12.1	15.9±2.1	0.96	0.97	0.90±0.06		
H. Y. Ch	H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009)							

Two operators contribute to $B^0 \rightarrow \rho^0 \rho^0$ decay

$$O_1 = (\overline{uu}) \cdot (\overline{bd})$$

color enhanced color suppressed $C_1 \sim -0.2 \sim C_2(1/3) \equiv C_2/N_c \sim 1/3$

Two operators contribute to $B^0 \rightarrow \rho^0 \rho^0$ decay:

color enhanced color suppressed $C_1 \sim -0.2 \sim C_2(1/3 + s_8) \equiv C_2/N_c^{eff} \sim 1/3 + ...$

C.D. Lu

f_L Branching ratio(10⁻⁶) QCDF PQCD **QCDF PQCD** Expt Expt $B^0 \rightarrow \rho^0 \omega$ 0.08 0.52 0.39 <1.5 0.67 0.7 0.5 <4.0 $B^0 \rightarrow \omega \omega$ 0.94 0.66 $B^0 \rightarrow \rho^0 \Phi$ 0.013 < 0.33 0.95 $B^+ \rightarrow \rho^+ \Phi$ 0.028 <3.0 0.95 $B^0 \rightarrow \omega \Phi$ 0.94 0.01 **B**⁰→ΦΦ 0.01 0.97

7

$B \rightarrow K^* \rho(\omega)$ decays

Branching ratio(10 ⁻⁶)					1	f_L
	QCDF	PQCD	Expt	QCDF	PQCD	Expt
B⁺ → K*⁰ρ⁺	9.2	9.9	9.2±1.5	0.48	0.70	0.48±0.08
B⁺ → K*⁺ρ⁰	5.5	6.0	4.6±1.1	0.67	0.75	0.78±0.12
B⁺ → K*⁺ω	3.0	4.0	<7.4	0.67	0.64	0.41±0.19
B⁰→K*⁰ρ⁰	4.6	3.2	3.4±1.5	0.39	0.65	0.57±0.10
B⁰ → K*+ρ⁻	8.9	8.4	<12.0	0.53	0.68	0.38±0.13 +0.03
			(10.3)			(BaBar)
B⁰ → K*⁰ω	2.5	4.7	2.0±0.5	0.58	0.65	0.69±0.13

Branching ratio(10⁻⁶) f_L

	QCDF	PQCD	Expt	QCDF	PQCD	Expt
B⁺ → K [*] ⁺ <u>K^{*0}</u>	0.6	0.55	1.2±0.5	0.45	0.74	0.75±0.25
B ⁰ →K ^{*+} K ^{*-}	0.1	0.21	<2.0	~1.0	~1.0	
B ⁰ →K ^{*0} K ^{*0}	0.6	0.33	0.8±0.5	0.52	0.58	0.80±0.13

 $Bs \rightarrow VV decays$

Bs \rightarrow $\rho\rho(\omega)$ decays

Branching ratio(10 ⁻⁶)					f	_L
	QCDF	PQCD	Expt	QCDF	PQCD	Expt
Bs→ρ⁺ρ⁻	0.68	1.5		1.0	1.0	
Bs→ρ⁰ρ⁰	0.34	0.75		1.0	1.0	
Bs→ρ⁰ω	0.004	0.009		1.0	1.0	
Bs→ωω	0.19	0.36		1.0	1.0	

Branching ratio(10 ⁻⁶)						f_L
	QCDF	PQCD	Expt	QCDF	PQCD	Expt
$Bs \rightarrow K^{*-}\rho^{+}$	21.6	24.0		0.92	0.95	
$Bs \rightarrow \underline{K}^{*0} \rho^0$	1.3	0.39		0.90	0.57	
$Bs \to \underline{K}^{*0} \omega$	1.1	0.34		0.90	0.49	

Branching ratio(10⁻⁶)

	QCDF	PQCD	Expt	QCDF	PQCD	Expt
Bs→K ^{*+} K ^{*-}	7.6	5.5		0.52	0.41	
Bs→K ^{*0} <u>K^{*0}</u>	6.6	5.4	8.1±4.6±5.6	0.56	0.38	0.31±0.13
$Bs \rightarrow \rho^0 \Phi$	0.18	0.23		0.88	0.86	
$Bs \rightarrow \omega \Phi$	0.18	0.17		0.95	0.69	
Bs → ΦΦ	16.7	16.7	19±5	0.36	0.35	0.361±0.022
Bs → <u>K^{*0}</u> Φ	0.37	0.39	1.1±0.29	0.43	0.50	0.51±0.17

More obsevables

Modes	$Br(10^{-6})$	$f_L(\%)$	f_{\perp} (%)	$\phi_{\parallel}(\mathrm{rad})$
$B^0 \to K^{*0} \phi$	$9.8^{+4.9}_{-3.8}$	$56.5^{+5.8}_{-5.9}$	$21.3^{+2.8}_{-2.9}$	$2.15_{-0.19}^{+0.22}$
Exp	9.8 ± 0.6	48 ± 3	24 ± 5	2.40 ± 0.13
$B^+ \to K^{*+}\phi$	$10.3^{+4.9}_{-3.8}$	$57.0^{+6.3}_{-5.9}$	$21.0^{+3.0}_{-3.0}$	$2.18^{+0.23}_{-0.19}$
Exp	10.0 ± 2.0	50 ± 5	20 ± 5	2.34 ± 0.18
$B_s \to \phi \phi$	$16.7^{+8.9}_{-7.1}$	$34.7^{+8.9}_{-7.1}$	$31.6_{-4.4}^{+3.5}$	$2.01_{-0.23}^{+0.23}$
Exp	19 ± 5	34.8 ± 4.6	$36.5 \pm 4.4 \pm 2.7$	$2.71^{+0.31}_{-0.36}\pm0.22$
$B_s \to \bar{K}^{*0} \phi$	$0.39^{+0.20}_{-0.17}$	$50.0^{+8.1}_{-7.2}$	$24.2_{-3.9}^{+3.6}$	$1.95_{-0.22}^{-0.21}$
Exp^{a}	1.10 ± 0.29	$51\pm15\pm7$	$28\pm11\pm2$	$1.75 \pm 0.58 \pm 0.30$
$B_s \to K^{*0} \bar{K}^{*0}$	$5.4^{+3.0}_{-2.4}$	$38.3^{+12.1}_{-10.5}$	$30.0^{+5.3}_{-6.1}$	$2.12_{-0.25}^{+0.21}$
Exp	$28.1\pm4.6\pm5.6$	$31\pm12\pm4$	$38\pm11\pm4$	

More obsevables

	$A_{CP}^{dir}(\%)$	$A^{0}_{CP}(\%)$	$A_{CP}^{\perp}(\%)$	$\Delta \phi_{\parallel}(rad)$	$\Delta \phi_{\perp}(rad)$
$B^0 \to K^{*0} \phi$	0.0	0.0	0.0	0.0	0.0
Exp		4 ± 6	-11 ± 12	0.11 ± 0.22	0.08 ± 0.22
$B^+ \to K^{*+} \phi$	$-1.0\substack{+0.18\\-0.26}$	$-0.60^{+0.12}_{-0.14}$	$0.75_{-0.11}^{+0.23}$	$-0.05_{-0.33}^{+0.12}$	-0.01
Exp	-1 ± 8	$17\pm11\pm2$	$22\pm24\pm8$	$0.07 \pm 0.2 \pm 0.05$	$0.19 \pm 0.20 \pm 0.07$
$B_s \to \phi \phi$	0.0	0.0	0.0	0.0	0.0
$B_s \to \bar{K}^{*0} \phi$	0.0	0.0	0.0	0.0	0.0
$B_s \to K^{*0} \bar{K}^{*0}$	0.0	0.0	0.0	0.0	0.0

Summary

■ The polarization in B→VV decays can be explained by PQCD

Important role of Annihilation type diagram

New physics seems still not show up

Thank you!